A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions.
نویسندگان
چکیده
This paper presents a mathematical model of the oxygen alveolo-capillary exchange to provide the capillary oxygen partial pressure profile in normal and pathological conditions. In fact, a thickening of the blood-gas barrier, heavy exercise or a low oxygen partial pressure (PO2) in the alveolar space can reduce the O2 alveolo-capillary exchange. Since the reversible binding between haemoglobin and oxygen makes it impossible to determine the closed form for the mathematical description of the PO2 profile along the pulmonary capillaries, an approximate analytical solution of the capillary PO2 profile is proposed. Simulation results are compared with the capillary PO2 profile obtained by numerical integration and by a piecewise linear interpolation of the oxyhaemoglobin dissociation curve. Finally, the proposed model is evaluated in a large range of physiopathological diffusive conditions. The good fit to numerical solutions in all experimental conditions seems to represent a substantial improvement with respect to the approach based on a linear approximation of the oxyhaemoglobin dissociation curve, and makes this model a candidate to be incorporated into the integrated descriptions of the entire respiratory system, where the datum of primary interest is the value of end capillary PO2.
منابع مشابه
EFFECTS OF MAGNETIC FIELD ON THE RED CELL ON NUTRITIONAL TRANSPORT IN CAPILLARY-TISSUE EXCHANGE SYSTEM
A mathematical model for nutritional transport in capillary tissues exchange system in thepresence of magnetic field has been studied. In this case, the cell is deformed. Due to concentrationgradients, the dissolved nutrient in substrate diffuses into surrounding tissue. Theanalytical method is based on perturbation technique while the numerical simulation is basedon finite difference scheme. R...
متن کاملA Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude
At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...
متن کاملA Biomechanical Approach for the Study of Deformation of Red Cells in Narrow Capillaries
This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap between the red cell and the vessel wall is generally small compared to the radius of the capillary for a single file flow of red cell in narrow vessel, particularly if the vessel diame...
متن کاملCapillary Effects on Surface Enhancement in a Non-Homogeneous Fibrous Porous Medium
The evaluation of a free fluid surface in a porous medium has several mathematical applications that are important in industries using molds, particularly in the fluid injection process. The vacuum-assisted resin transfer molding (VARTM) process is a promising technology in the primary composite industry. An accurate computational simulation of the VARTM process would be a cost-effective tool i...
متن کاملA Computational Study of Oxygen Transport in the Body of Living Organism (RESEARCH NOTE)
Oxygen is an essential part of the living organism. It is transported from blood to the body tissue by the systematic circulation and large part of it is stored in the blood flowing in capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The governing equations are established assuming that the blood is flowing along a co-axial cylindrical capillary inside ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological measurement
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2003